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Abstract
Conditions conducive to fires are becoming increasingly common and widespread 
under climate change. Recent fire events across the globe have occurred over un-
precedented scales, affecting a diverse array of species and habitats. Understanding 
biodiversity responses to such fires is critical for conservation. Quantifying post-fire 
recovery is problematic across taxa, from insects to plants to vertebrates, especially at 
large geographic scales. Novel datasets can address this challenge. We use presence-
only citizen science data from iNaturalist, collected before and after the 2019–2020 
megafires in burnt and unburnt regions of eastern Australia, to quantify the effect of 
post-fire diversity responses, up to 18 months post-fire. The geographic, temporal, 
and taxonomic sampling of this dataset was large, but sampling effort and species dis-
coverability were unevenly spread. We used rarefaction and prediction (iNEXT) with 
which we controlled sampling completeness among treatments, to estimate diversity 
indices (Hill numbers: q = 0–2) among nine broad taxon groupings and seven habitats, 
including 3885 species. We estimated an increase in species diversity up to 18 months 
after the 2019–2020 Australian megafires in regions which were burnt, compared 
to before the fires in burnt and unburnt regions. Diversity estimates in dry sclero-
phyll forest matched and likely drove this overall increase post-fire, while no taxon 
groupings showed clear increases inconsistent with both control treatments post-fire. 
Compared to unburnt regions, overall diversity across all taxon groupings and habitats 
greatly decreased in areas exposed to extreme fire severity. Post-fire life histories are 
complex and species detectability is an important consideration in all post-fire sam-
pling. We demonstrate how fire characteristics, distinct taxa, and habitat influence 
biodiversity, as seen in local-scale datasets. Further integration of large-scale datasets 
with small-scale studies will lead to a more robust understanding of fire recovery.
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1  |  INTRODUC TION

Fire is an important landscape-scale disturbance, broadly shaped 
by climate and anthropogenic activity, and a key driver of ecologi-
cal processes (Balch et al., 2017; Bowman et al., 2009). Conditions 
conducive to fire are exacerbated by anthropogenic climate change 
and are becoming increasingly common and widespread (Abatzoglou 
et al.,  2019; Jolly et al.,  2015), driving shifts in fire regimes glob-
ally (Keeley & Syphard,  2016; Parks et al.,  2016). As a result, fire 
frequency, intensity, size, and fire season duration (collectively all 
elements of the “fire regime”) are increasing in many regions of 
the world (Fonseca et al.,  2017; Jolly et al.,  2015; van Mantgem 
et al.,  2013). This shift is exemplified by fires in 2019–2020 in 
Australia, Californian, and the Arctic Circle (Abram et al.,  2021; 
Descals et al., 2022; Pickrell & Pennisi, 2020), as well as recent fires 
throughout the Mediterranean and North America (Canosa, 2023; 
Sullivan & Tondo, 2023). As fire regimes change, we must be able 
to monitor and manage the consequences for biodiversity (He 
et al., 2019; Heim et al., 2022; Nimmo et al., 2021), from the individ-
ual and species level to populations and communities.

The effects of fire on biodiversity are complex, and our cur-
rent understanding is built from studies on one to a few taxa, usu-
ally across limited spatial extents (but see He et al., 2019; Heim 
et al., 2022). Many species in fire-prone environments have traits 
that can promote population persistence, allowing some individ-
uals to withstand or avoid fires, stimulate regeneration of a new 
cohort, and/or move away from the fire and then return (Thurman 
et al., 2020). Plant life histories of fire-cued germination, flower-
ing, resprouting, and seed dispersal have led to a dependence on 
fires for continued dispersal, gene flow, persistence, and recruit-
ment in fire-prone ecosystems (e.g., Dunker et al., 2019; Lamont 
et al., 1991; Nolan et al., 2021; Pausas & Keeley, 2014). Survival, 
avoidance, or recruitment related to fires subsequently allows a 
wide range of species to capitalize on the changed post-fire land-
scape (e.g., increased resource availability and decreased compe-
tition). For example, granivorous birds can exploit increased pine 
seed availability soon after fires in Corsican pine forests (Thibault 
& Prodon, 2006), and bees show increases in both abundance and 
species richness post-fire, likely attributable to several behavioral 
traits (e.g., burrowing) and their ability to exploit resource avail-
ability post-fire (Mason et al., 2021). Variation in elements of the 
fire regime will also differentially affect species, either directly or 
indirectly through subsequent shifts in vegetation communities 
(e.g., Fontaine & Kennedy,  2012; Le Breton et al.,  2022; Mason 
et al., 2021; Ooi et al., 2014). As such, species responses will vary 
subject to different fire regime elements, and multi-taxon compar-
isons of post-fire responses are necessary to understand overall 
effects on biodiversity (e.g., Heim et al., 2022).

Collecting data on many species immediately after large-scale 
fires is logistically challenging for a number of reasons, including 
restricted funding for and availability of professional expertise to 
match the scale of these events (Kirchhoff et al., 2021) driving a lack 
of available data to appropriately quantify biodiversity responses 

(Saunders et al., 2021; Ward et al., 2020). For some taxon groupings 
(e.g., invertebrates), data collection is particularly rare, due to myr-
iad political, scientific, and social factors which inhibit knowledge 
and research (Saunders et al., 2021). Citizen science efforts—where 
data are collected by many amateur observers who can often be ex-
perts in specific taxa, habitats, or regions, and are in the field more 
than professionals (Viola et al., 2022)—can solve many, although not 
all, of these challenges. For example, multi-taxon species incidence 
data from before and after fires were collected accurately, rapidly 
(important given the fast rate of many species fire responses), and 
at a spatial extent matching the 2019–2020 Australian megafires by 
large numbers of amateur observers (Kirchhoff et al., 2021). Criti-
cally, these observations across diverse taxon groupings and habi-
tats cover a broad temporal and spatial scale for which systematic 
monitoring data do not exist.

Citizen science sampling effort is very rarely systematic, present-
ing a potential barrier to their use in analyses of diversity. Recent ad-
vances in rarefaction methods can help by controlling for sampling 
completeness using extrapolation of Hill numbers (q) which repre-
sent estimates of diversity indices such as species richness (q = 0; the 
number of species in the sample), Shannon diversity (q = 1; effective 
number of common species in the assemblage as all individuals are 
equally weighted), and Simpson diversity (q = 2; effective number 
of dominant species in the assemblage, discounting non-dominant 
species; Chao et al., 2014; Chao & Jost, 2012; Hsieh et al., 2016). 
Sampling completeness is the proportion of all individuals in an 
assemblage belonging to species in the sample and controlling for 
this metric removes systematic biases otherwise present in equal n-
based standardization approaches which can fail to accurately char-
acterize communities with high species richness compared to those 
with lower richness (Chao et al., 2014; Chao & Jost, 2012). Using this 
approach for iNaturalist data, we can control sampling completeness 
among treatments. This enables estimation of Hill numbers which 
allow for investigation of ecological outcomes where standardized 
datasets do not exist.

In the 2019–2020 Australian megafires, the scale and severity of 
the fires triggered conservation actions and post-fire environmental 
management interventions in attempts to save species presumed to 
be at risk (Gallagher et al., 2021, 2022; Legge et al., 2022). However, 
limited data were available to direct such actions in an informed way. 
Habitats which are typically exposed to fires are likely to be relatively 
resilient, at least within the bounds of fire severity and frequencies 
to which they have adapted (Nolan et al.,  2021). Others however, 
such as Gondwanan rainforests, rarely or never experience fire, and 
successful regeneration of component species or whole vegetation 
communities is less certain (Le Breton et al., 2022; Lee et al., 2022), 
which could potentially lead to habitat transformations (Tepley 
et al., 2018). The longer term post-fire trends of ecological commu-
nities from either of these scenarios (i.e., fire-adapted habitats burnt 
at thresholds beyond their historic regimes or burnt fire-sensitive 
habitats) remain poorly understood in the face of large-scale mega-
fire events (Godfree et al.,  2021; Rowley et al.,  2020; Saunders 
et al., 2021).
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    |  3GORTA et al.

Our objective was to determine biodiversity responses and 
recovery (i.e., species richness, Shannon diversity, and Simpson 
diversity) to the eastern Australian megafires of 2019–2020 at a 
similar scale to these fires, and across multiple taxon groupings. 
We used citizen science observations from iNaturalist from before 
and after the 2019–2020 fires to explore biodiversity responses to 
these fires across nine broad taxon groupings and seven habitats 
(Figure 1). We collectively used all taxon groupings and habitats 
to assess how: (a) diversity estimates compared pre- and post-fire 
in burnt and unburnt regions; (b) pre- and post-fire diversity esti-
mates compared among distinct fire severity classes; and (c) post-
fire diversity estimates changed with time-since-fire between 
burnt and unburnt regions up to 18 months post-fire. We then in-
vestigated how pre- and post-fire diversity estimates in burnt and 
unburnt regions differed among the nine broad taxon groupings 
and seven habitats.

2  |  METHODS

2.1  |  Data

iNaturalist (California Academy of Sciences: http://www.inatu​
ralist.org/) is a global citizen science platform, currently hosting 
approximately 155 million observations (presence-only incidence 
records) of more than 430,000 species. Observations in iNatural-
ist are contributed by volunteers, largely via digital media (e.g., 
photographs and sound recordings), and identified to the finest 
taxonomic level possible by volunteers (see Kirchhoff et al., 2021). 
In response to the 2019–2020 megafires, a subproject named the 
Environment Recovery Project was created on iNaturalist (https://
www.inatu​ralist.org/proje​cts/envir​onmen​t-recov​ery-proje​ct-
austr​alian​-bushf​ires) to target citizen science effort toward docu-
menting recovery in burnt regions. This allowed for rapid post-fire 

F I G U R E  1  Extent of the study area in New South Wales and the Australian Capital Territory (gray with darker gray borders), showing at 
1000-m2 resolution (a) the extent of the unburnt and burnt sampling regions colored by fire severity levels and (b) this same extent overlaid 
with seven broad habitats. Distribution of iNaturalist observations colored by taxon groupings—(c, d)—and habitat—(e, f)—which were used in 
our analyses for the nine before fire periods (c, e) and single after fire period (d, f), over the fire footprint (gray).
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data accumulation (Kirchhoff et al.,  2021) while addressing the 
lack of available post-fire biodiversity data (Ward et al.,  2020). 
Through the Atlas of Living Australia (https://www.ala.org.au/), 
all iNaturalist observations from New South Wales (NSW) and the 
Australian Capital Territory (ACT) flagged as “Research Grade” 
were downloaded up to December 2022, including species for 
which geolocation information automatically obscured on iNatu-
ralist (e.g., threatened species) but can be made available for rel-
evant research (although some records are manually obscured by 
observers for which geolocation information cannot be obtained). 
Our analysis included records from two broad periods, before 
(from January 1, 2017 to October 1, 2019) and up to 548 days 
after the 2019–2020 fires (November 1, 2019 to 23rd July 23, 
2021, see below for more detail).

2.2  |  Fire data

Spatial fire severity data were downloaded from the NSW De-
partment of Planning, Industry and Environment Fire Extent and 
Severity Mapping (FESM; DPIE, 2020; Gibson et al., 2020). Using 
semi-automated machine learning and imagery from Sentinel 2, 
this dataset of fire severity provided the most accurate available 
map of the 2019–2020 megafires in NSW and the ACT, at a 10-m 
spatial resolution (DPIE, 2020). We used five of the six severity cat-
egories provided by DPIE (2020; unburnt, and low, moderate, high, 
and extreme severity), and excluded the reserved class which ex-
perimentally defined burnt grassland (Figure 1). Areas not listed as 
one of the burnt categories were categorized as unburnt. Low se-
verity in FESM is defined as burnt understory with unburnt canopy, 
where >10% understory was burnt, and >90% of the canopy was 
green (DPIE, 2020). Moderate severity is defined as partial canopy 
scorch where 20%–90% canopy was scorched (DPIE, 2020). High 
severity is defined as complete canopy scorch with or without par-
tial canopy consumption, where >90% canopy was scorched and 
<50% canopy was consumed (DPIE, 2020). Extreme severity is de-
fined as complete canopy consumption where >50% canopy bio-
mass was consumed (DPIE, 2020). The date of fire (the date when 
the fire-front burnt within a given grid cell) was determined from 
satellite-derived hotspot data (https://hotsp​ots.dea.ga.gov.au/), 
for which hotspots are defined by high levels of infrared radiation 
and thus were relatively accurate for detecting the date on which 
fires first occurred.

2.3  |  Vegetation data

Habitats were assigned using a vegetation map at 200 m spa-
tial resolution for vegetation classes across NSW and the ACT 
(DPIE,  2012). These vegetation classes were condensed into 10 
habitats: cleared, dry sclerophyll forest, flood-prone forest, fresh-
water wetland, grassland, heath, marine and estuary, rainforest, 
wet sclerophyll forest, and woodland. Three of these—grassland, 

freshwater wetland, and marine and estuary—were subsequently 
removed due to low sample sizes (see below), resulting in a total of 
seven habitats used for our analyses (Appendix S1).

2.4  |  Data aggregations

Vegetation (200 m spatial resolution) and FESM data (10 m spatial 
resolution) were scaled up to 1000 m spatial resolution matching 
the hotspot data and combined into one shapefile using ArcMap 
(Esri, 2019; Figure 1). This shapefile included a fire severity value (the 
mode of all the 10 m resolution severity values within the 1000 m 
grid cell; see Section 2.2), a habitat (using the majority method to 
determine the dominant vegetation type in the 1000 m grid cell; see 
Section 2.3), and a date of fire-front (see Section 2.2) per 1000 m 
grid cell. The same number of grid cells in the burnt region assigned 
to each vegetation class (from which habitat was derived; see Sec-
tion  2.3) was then randomly selected from areas which were not 
burnt by the 2019–2020 fires in NSW and the ACT. When burnt 
or unburnt regions had unequal grid cell numbers per vegetation 
class, grid cells were randomly removed from the treatment with the 
higher value, to ensure equal spatial and vegetation class coverage 
between treatments. Fire severity, fire date, and habitat values were 
then extracted for each research-grade iNaturalist observation with 
≤1000 m accuracy (such that observations would only be a maximum 
of one grid cell offset), resulting in a dataset of species observations 
at 1000 m resolution, with associated fire severity, fire date, and 
habitat.

iNaturalist records were grouped into 37 broad taxon group-
ings (e.g., amphibians, birds, bryophytes, eudicots, fungi, green 
algae, insects, ray-finned fish, etc.). Of the 37 taxon groupings and 
10 habitats, only those with ≥90 observations in burnt regions in 
the 18 months after fires were included for further analysis. This re-
sulted in nine broad taxon groupings (amphibians, arachnids, birds, 
eudicots, fungi, insects, mammals, monocots, and reptiles) and seven 
habitats (cleared, dry sclerophyll forest, flood-prone forest, heath, 
rainforest, wet sclerophyll forest, and woodland) which were used 
for final analyses (Figure 1).

3  |  ANALYSIS

3.1  |  Estimating biodiversity

We analyzed trends in biodiversity using the first three Hill num-
bers (q): q = 0 (species richness), q = 1 (Shannon diversity), and q = 2 
(Simpson diversity; Hsieh et al., 2016). This was done using a rarefac-
tion and extrapolation approach to account for differential sampling 
between units, thus allowing for more direct comparisons. Analy-
ses were done using the “iNEXT” package in R (Hsieh et al., 2016; R 
Core Team, 2020). We used the estimateD() function in iNEXT 
to calculate estimates for each Hill number (q = 0–2) and plotted 
these with a 95% confidence interval to compare among factors for 
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all tests. Statistical significance at 5% can be inferred where confi-
dence intervals do not overlap, although overlapping intervals do not 
preclude statistical significance (Chao et al., 2014). As such, we infer 
the strength of differences between treatments by categorizing 
results by: “no overlap,” “partial overlap,” and “near-complete/com-
plete overlap” of 95% confidence intervals (CI). Applying rarefaction 
and prediction through “iNEXT” enabled us to control for uneven 
sampling effort among samples (by controlling sampling complete-
ness), and to apply Hill numbers >0 to incidence data, such as those 
derived from iNaturalist (Chao et al., 2014; Hsieh et al., 2016).

3.2  |  Standardizing sampling periods

The period from which iNaturalist data were extracted for this analy-
sis was restricted to between 2017 and mid-2021; however, unlike in 
previous attempts to use iNaturalist data as time-series (e.g., Forister 
et al.,  2021), this alone did not appropriately account for increased 
sampling effort after the fires. To do this, we created temporally equal 
sampling periods for each grid cell from which to extract iNaturalist 
observations for the before–after fire and burnt–unburnt treatments. 
This was done in burnt areas by extracting all species records up to 
548 days (18 months) from the date the fire-front passed through a 
given grid cell in the post-fire (“after”) period. For the pre-fire (“be-
fore”) sampling, 1029 days was subtracted from the date of fire-front 
for each cell (such that the earliest simulated date of fire-front was 
January 1, 2017), and for each of the eight subsequent pre-fire sam-
pling period (nine in total), the date of fire-front was brought forward 
46 days (1.5 months). While there was overlap among the nine pre-fire 
periods, we did not treat these as independent, rather using them as 
an indication of pre-fire variation to compare to post-fire estimates 
of biodiversity. The latest starting date for the pre-fire periods was 
January 3, 2018, to ensure the pre- and post- fire sampling periods 
did not overlap. The number of unburnt and burnt grid cells per veg-
etation class was equal, so the date of fire-front in post-fire unburnt 
cells was randomly assigned to cells of matching vegetation classes 
from the burnt cells to extract iNaturalist records using the same ap-
proach as for burnt areas. The above approach was also used to group 
six 3-month (91-day) time periods using only the data after the fires 
(discarding data 547 or 548 days after the fires so groups were even), 
to compare diversity estimates for blocks of time since fire between 
burnt and unburnt regions. For fire severity comparisons, only iNatu-
ralist records up to 18-month post-fire (not before; due to very low 
(<1%) sampling completeness when “before” sampling was included) 
within the footprint of each severity level were used (i.e., sampling for 
low fire severity was restricted to grid cells subject to low fire severity 
during the 2019–2020 megafires).

3.3  |  Standardizing sampling effort

Sampling effort was standardized by creating two checks for com-
parison with post-fire burnt region diversity (“before” and unburnt 

region estimates), as well as controlling for sampling completeness 
using iNEXT. Our sampling approach resulted in fewer post-fire re-
cords across both burnt and unburnt regions than before, but more 
records in unburnt regions than burnt regions both before and after 
the fires (burnt-before: 527; unburnt-before: 703; burnt-after: 5151; 
unburnt-after: 10857). This provided a double check to increase 
confidence that results were not driven by sampling effort. Most 
importantly, however, as Hill number estimates (diversity estimates) 
increase with sampling effort and therefore sample completeness 
(Chao et al., 2014; Chao & Jost, 2012), we used iNEXT to standardize 
sampling completeness within our comparisons to directly control 
for uneven sampling effort among treatments (Hsieh et al., 2016). 
Comparisons at the maximum common level of sample complete-
ness among treatments for species richness were derived using 
rarefaction and prediction up to twice the reference sample size (n) 
of the least sampled factor (Chao et al., 2014). As extrapolation for 
q > 0 introduces little to no bias, estimates for Shannon and Simp-
son diversity were extrapolated to 100% sampling completeness 
where possible, and 90% when estimations at 100% failed (Chao 
et al., 2014). Our data represented species incidences, so the abun-
dance values in Shannon and Simpson diversity indices used rela-
tive frequency of a given species within the reference sample, using 
the datatype = “incidence_freq” argument in “iNEXT” (Chao 
et al., 2014; Hsieh et al., 2016). See Appendix S2 for further details 
on our standardization approach.

3.4  |  Data summary

The final dataset included 3885 species from 23,568 iNatural-
ist observations, with 7560 before and 16,008 after the fires, 
and 5678 observations from burnt regions and 17,890 obser-
vations in the unburnt region. A total of nine taxon groupings: 
amphibians (nburnt after = 137), arachnids (nburnt after = 98), birds 
(nburnt after = 771), eudicots (nburnt after = 1925), fungi (nburnt after = 101), 
insects (nburnt after = 995), mammals (nburnt after = 149), monocots 
(nburnt after = 757), and reptiles (nburnt after = 218); and seven habitats: 
cleared (nburnt after = 1099), dry sclerophyll forest (nburnt after = 2435), 
flood-prone forest (nburnt after = 169), heath (nburnt after = 253), rain-
forest (nburnt after = 127), wet sclerophyll forest (nburnt after = 936), 
and woodland (nburnt after = 132); were used in our analysis. For 
severity analyses, iNaturalist observations up to 18-months 
post-fire were used from unburnt regions (n = 10,857) and those 
subject to the four fire severity categories: low (n = 1203), mod-
erate (n = 1308), high (n = 2135), and extreme severity (n = 505). 
The six periods used for our analysis of time-since-fire were 
0–3 months (nburnt = 692, nunburnt = 2321), 3–6 months (nburnt = 659, 
nunburnt = 2546), 6–9 months (nburnt = 840, nunburnt = 1348), 
9–12 months (nburnt = 1100, nunburnt = 1582), 12–15 months 
(nburnt = 1032, nunburnt = 1840), 15–18 months (nburnt = 811, 
nunburnt = 1162). Using iNEXT to analyze these data when all taxon 
groupings were grouped together, we compared: (a) post-fire di-
versity estimates to the range of confidence intervals from the 
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nine pre-fire estimates between burnt and unburnt regions; (b) 
post-fire diversity estimates among distinct fire severity classes 
and unburnt regions; and (c) post-fire diversity estimates between 
burnt and unburnt regions with time-since-fire among six 3-month 
(91-day) periods of 0–3, 3–6, 6–9, 9–12, 12–15, and 15–18 months 
post-fire. We also compared post-fire diversity estimates to the 
range of confidence intervals from the nine pre-fire estimates 
between burnt and unburnt regions among the nine broad taxon 
groupings and seven habitats.

4  |  RESULTS

4.1  |  Overall trends

Grouping all taxon groupings and habitats, diversity estimates (q ≥ 0) 
were greater up to 18 months after fires than the nine periods from be-
fore fires in the regions burnt by the 2019–2020 megafires (no 95% CI 
overlap; Figure 2a). This was also the case for regions which were un-
burnt except for Simpson diversity before and after the fires (complete 

F I G U R E  2  Estimates of Hill numbers q = 0 (species richness), q = 1 (Shannon diversity), and q = 2 (Simpson diversity) with 95% confidence 
intervals (error bars) using rarefaction and prediction of iNaturalist observations (using the “iNEXT” package) grouped across nine taxon 
groupings and seven habitats. Sampling completeness (SC) was 100% for q > 0, and double the reference sample for q = 0 (per Chao 
et al., 2014). Estimates shown from: (a) unburnt (blue) and burnt regions (orange), before (nine 18-month periods; faded colors) and after 
(one 18-month sampling period; non-faded colors) the 2019–2020 megafires (SC(q = 0) = 52.9%); (b) areas exposed to low, moderate, high, and 
extreme fire severity up to 18 months after the 2019–2020 megafires, and unburnt regions (SC(q = 0) = 65.4%); and (c) up to 18 months after 
the 2019–2020 megafires in 3-month periods between unburnt (blue) and burnt (orange) regions (SC(q = 0) = 70.3%).
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    |  7GORTA et al.

95% CI overlap; Figure 2a). There was no 95% CI overlap between be-
fore- and after-fire estimates. After the fires, estimates for the burnt re-
gion were greater than those for the unburnt region, (no overlap in 95% 
CI) and before the fires, unburnt region estimates tended or were higher 
than burnt region estimates (partial or no 95% CI overlap; Figure 2a).

Compared to unburnt regions, diversity estimates when grouped 
across all taxon groupings and habitats remained similar (complete 
95% CI overlap for species richness), decreased (Shannon diversity: no 
95% CI overlap), or increased (Simpson diversity: no 95% CI overlap) 
after low severity fires (Figure 2b). Diversity estimates after moderate 
and high severity fires tended lower (species richness: partial 95% CI 
overlap), were lower (Shannon diversity: no 95% CI overlap), or re-
mained similar to unburnt estimates (complete or near-complete 95% 
CI overlap). After extreme severity fires, all diversity estimates were 
lower than all other treatments (no 95% CI overlap; Figure 2b). There 
was partial to complete 95% CI overlap in some diversity estimates 
among all severity levels including unburnt, except extreme severity 
(except for low severity Simpson diversity estimates which showed no 
overlap with unburnt and high severity estimates; Figure 2b).

Grouped across all taxon groupings and habitats, diversity esti-
mates generally increased with time since fire in burnt areas, while 
this trend was less clear in unburnt regions (Figure 2c). Compared to 

unburnt regions, diversity estimates were greater in burnt regions at 
6–9, 12–15, and 15–18 months post-fire (no 95% CI overlap, except 
Simpson diversity at 15–18 months with partial 95% CI overlap) and 
similar at 3–6 months post-fire (complete 95% CI overlap except 
Shannon diversity which tended lower with partial 95% CI overlap; 
Figure 2c). Estimates were lower at 0–3 months for Shannon and Simp-
son diversity but not species richness (complete 95% CI overlap) and 
were lower at 9–12 months post-fire (no 95% CI overlap; Figure 2c).

4.2  |  Taxon groupings and habitat trends

Grouped across all habitats, diversity estimates after the fires in 
burnt regions compared to unburnt regions were higher for rep-
tiles (no 95% CI overlap); tended higher in amphibians, arachnids, 
eudicots (Shannon diversity only), and monocots (partial 95% CI 
overlap, except for amphibian and arachnid Shannon diversity 
which had complete 95% CI overlap); tended lower for mammals 
and eudicots (partial 95% CI overlap, except eudicot Shannon 
diversity); and were lower for birds, fungi, and insects (no 95% 
CI overlap, except complete overlap in fungi Shannon diversity; 
Figure  3a; Appendix  S3). When compared to diversity estimates 

F I G U R E  3  Example estimates of Hill numbers q = 0 (species richness), q = 1 (Shannon diversity), and q = 2 (Simpson diversity) with 
95% confidence intervals (error bars) using rarefaction and prediction of iNaturalist observations (using the “iNEXT” package). Sampling 
completeness (SC) was 100% for q > 0 in these examples (see Appendix S3 for exceptions for some groupings), and double the reference 
sample for q = 0 (per Chao et al., 2014). Estimates were grouped (a) across habitats for taxon-specific estimates (birds shown here; 
SC(q = 0) = 61.9%); and (b) across taxon groupings for habitat estimates (dry sclerophyll forest shown here; SC(q = 0) = 49.7%). Estimates shown 
from: unburnt (blue) and burnt regions (orange), before (nine 18-month periods; faded colors) and after (one 18-month sampling period;  
non-faded colors) the 2019–2020 megafires. Figures from all analyses taxon groupings and habitats can be found in Appendix S3.
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8  |    GORTA et al.

before the fires in the burnt regions, estimates increased after the 
fires for eudicots (Simpson diversity only), insects (except species 
richness), and reptiles (Shannon diversity only; no 95% CI over-
lap), and tended higher in eudicots (Shannon diversity only) and 
mammals (Shannon and Simpson diversity; partial 95% CI overlap; 
Figure 3a; Appendix S3). After the fires in unburnt regions, diver-
sity estimates were higher than before the fires for insects (no 
95% CI overlap, except for Simpson diversity) and tended higher 
in amphibians, mammals, monocots, and reptiles (partial 95% CI 
overlap; except amphibian Simpson diversity and mammal and 
monocot Shannon diversity estimates; Figure  3a; Appendix  S3). 
Before the fires, diversity estimates were lower in burnt than un-
burnt regions for insects (no 95% CI overlap), tended lower for 
eudicot and mammal Simpson diversity (partial 95% CI overlap), 
and tended higher for amphibians and arachnids (species richness 
for both, and arachnid Simpson diversity; partial 95% CI overlap; 
Figure 3a; Appendix S3). All other estimates for taxon groupings 
remained similar among the four treatment comparisons (com-
plete 95% CI overlap; Figure 3a; Appendix S3).

Grouped across all taxon groupings, diversity estimates for burnt 
regions compared to unburnt regions after the fires were higher in 
dry sclerophyll forest, flood-prone forest, and rainforest (no 95% CI 
overlap except rainforest Shannon and Simpson diversity); tended 
higher in rainforest, wet sclerophyll forest, and woodland (partial 
95% CI overlap in Shannon diversity, as well as rainforest Simpson di-
versity); tended lower in heath and woodland (partial 95% CI overlap, 
except woodland richness and Shannon diversity); and were lower 
in cleared regions (no 95% CI overlap, except richness; Figure  3b; 
Appendix S3). In burnt regions, diversity estimates increased after 
the fires compared to before in cleared regions (Shannon diversity), 
dry sclerophyll forest, flood-prone forest (Shannon diversity), heath, 
rainforest, and woodland (no 95% CI overlap, except for Simpson 
diversity in heath, rainforest, and woodland) and tended higher for 
Simpson diversity in cleared regions, heath, rainforest, and wood-
land and species richness in flood-prone forest (partial 95% CI over-
lap; Figure 3b; Appendix S3). In unburnt regions, diversity estimates 
increased after the fires compared to before in cleared, dry sclero-
phyll forest, wet sclerophyll forest, and woodland (no 95% CI over-
lap) and tended lower in flood-prone forest (partial 95% CI overlap; 
Figure  3b; Appendix  S3). Before the fires, diversity estimates for 
burnt and unburnt regions were higher in cleared regions for Simp-
son diversity (no 95% CI overlap) and tended higher for Shannon 
diversity (partial 95% CI overlap; Figure 3b; Appendix S3). All other 
estimates for habitats remained similar among the four treatment 
comparisons (complete 95% CI overlap; Figure 3b; Appendix S3).

5  |  DISCUSSION

We found no evidence of post-fire declines in diversity across the 
burnt regions of NSW and the ACT over the 18 months after the 
2019–2020 Australian megafires compared to periods before the 
fires and in unburnt regions among taxon groupings, habitats, and 

fire severity level (noting burnt region fire severity estimates were 
only compared to unburnt regions). Rather, we found an overall 
increase in diversity up to 18 months after the fires as well as in-
creases in diversity estimates in some specific taxon groupings 
and habitats, although diversity in most groupings did not clearly 
change after the fires. We attribute these findings to a trio of key 
factors: the evolutionary and behavioral adaptations of taxon 
groupings fostering resilience to fire, the post-fire recovery pro-
cesses, and the increased detectability of certain species post-fire 
due to heightened activity or attractiveness to observers, such as 
post-fire flowering (Pyke, 2017). Overall, our study underscores 
the invaluable contribution of rapidly and continuously collected 
citizen science data which offers some of the earliest quantitative 
across-taxa evidence demonstrating biodiversity responses to the 
2019–2020 Australian megafires.

5.1  |  Adaptations to fire and the impacts of 
changing fire regimes

Biomes across Australia evolved with fire, with species exhibiting 
adaptations and behavioral traits which support their resilience to 
fire disturbance (Bowman et al., 2012). For example, 95% of plant 
species found in Australian forests (dry and wet), shrublands, and 
woodlands, and 82% of plants in rainforests, exhibit life histo-
ries of persistent seed banks or post-fire resprouting, enabling re-
generation after fire (Clarke et al.,  2015). Many animals can flee 
from fire grounds to avoid flames and smoke, including birds, fly-
ing insects, mammals, and reptiles (Christensen,  1980; Griffiths & 
Christian, 1996; Keith, 2012), while others have been observed to 
shelter from fires (Brennan et al., 2011; Griffiths & Christian, 1996; 
Keith,  2012; Whelan et al.,  1996), which may enable their persis-
tence through fire events. While limited information is currently 
available on short- to mid-term biodiversity responses to the 2019–
2020 megafires, the successful short-term persistence of at least one 
taxon, amphibians (frogs), has been observed (Rowley et al., 2020). 
This is likely due to the ability of frogs to seek refuge from the 
fires (Rowley et al., 2020) and is consistent with our finding of no 
clear change in frog diversity post-fire in burnt regions compared 
to before fire or unburnt regions. This does not, however, discount 
more localized or species-specific impacts of these fires on frogs  
(e.g., Beranek et al.,  2023). Adaptations and behaviors which 
facilitate fire survival across taxon groupings may reduce immediate 
mortality and support persistence; potentially alleviating immediate 
declines in diversity, but this does not necessarily translate to longer 
term persistence in post-fire landscapes.

Extremely severe fires and associated fire storms may reduce 
survival if fire severity exceeds that to which species are adapted. 
Some plant species may not persist at local scales in areas sub-
ject to extreme fire, especially where overlapping threats occur 
such as a history of high fire frequency or severe drought (Auld 
et al.,  2022; Nolan et al.,  2021). Overwhelmingly, animals tend 
to survive the immediate passage of fires; however, a greater 
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    |  9GORTA et al.

proportion of animals are killed as fire severity increases (Jolly 
et al., 2022). The 2019–2020 megafires were exceptional in scale, 
resulting in a proportionately large area which was burnt by more 
severe fires (Collins et al., 2021).

Our analysis reveals a generally positive correlation between the 
presence of fire and diversity, a trend likely driven by the emergence 
or discovery of additional species post-fire. The evidence for this 
correlation was not clearly driven by a particular taxonomic group-
ing, although bird and reptile diversity estimates were greater in 
burnt than unburnt regions after the fires. One habitat, dry sclero-
phyll forest, had an effect evident across all taxon groupings which 
matched the overall trend (Figure 3b; Appendix S3), and may be due 
to the high frequency of post-fire flowering in this ecosystem (Knox 
& Clarke, 2006). An important anomaly to this general trend is ob-
served when the severity of the fire reaches extreme levels, with 
no apparent uptick in biodiversity (Figure 2). This is consistent with 
the effects of a negative effect of severe fire on diversity in other 
systems (e.g., Steel et al., 2022) and suggests a possible equilibrium 
wherein the local species extinctions have offset introductions and/
or greater detectability. Another complexity could lie in the potential 
delay in habitat recovery in such heavily affected sites, requiring an 
extended period for the return of locally extinct species, potentially 
exceeding the timeframe of our study. Continued collation of citizen 
science observations will provide long-term data over large scales, 
which would be suitable for use to investigate these issues, espe-
cially when coupled with standardized data collection.

While most regions in our study which burnt are naturally ex-
posed to fire, the changes to fire regimes (e.g., increased fire 
frequency) and not necessarily the individual event will have 
the greatest long-term influence on the affected communities  
(Le Breton et al., 2022; Nolan et al., 2021). Rainforests, for exam-
ple, naturally but rarely burn patchily and at low intensity during 
extremely dry periods (Collins et al.,  2019; Murphy et al.,  2013). 
However, the higher prevalence of plants incapable of post-fire 
recruitment, or with limited resprouting capacity after severe 
fires in rainforests, makes them particularly vulnerable to increas-
ingly frequent and intense fires (Clarke et al., 2015). This can slow  
recruitment or cause local extinction of species in some functional 
groups, potentially leading to state shift and habitat change (Clarke 
et al.,  2015; Tepley et al.,  2018). As such, while examination of  
diversity responses to single, large fire events such as the 2019–
2020 Australian megafires provides valuable insights into short- to 
medium-term fire impacts at scale, examination of potential shifts 
in fire regimes to which such events may contribute is critical for 
informing long-term on-ground management and conservation  
actions associated with changing fire regimes under climate change.

5.2  |  The effects of recovery processes after fire

Over the 18-month period after the 2019–2020 megafires across 
the study area, diversity estimates increased after the fires in 
burnt areas, generally at its lowest in the first 3-month post-fire, 

peaking 12–15 months post-fire (Figure  2c). This trend was less 
clear in unburnt regions, although diversity estimates were great-
est 9–12 months post-fire (Figure  2c). Increases in both burnt and 
unburnt treatments post-fire may have been driven by a boost in 
growth and productivity as high rainfall in eastern Australia driven 
by a shift toward La Niña conditions broke a severe drought which 
contributed to the 2019–2020 megafires (Qin et al., 2022). This shift 
in conditions was consistent between unburnt and burnt sampling 
regions in our study, thus would not have caused any bias our re-
sults (Appendix S4). Despite this, there was variation between burnt 
and unburnt diversity estimates, likely driven by a combination of 
seasonality, local and broader scale environmental conditions, fire 
ephemeral responses, detectability or attractiveness to observers, 
and potential shifts in interspecific interactions such as competition, 
herbivory, and predation (Keith, 2012). For example, fire-stimulated 
flowering species, including the orchids and fire ephemerals, showed 
noteworthy blooms in the spring–summer following the fires, which 
may have contributed to increased detectability and therefore diver-
sity in burnt areas 6–9 months post-fires.

Increased detectability of species recorded by citizen scientists, 
more generally, is a factor which likely influenced our findings re-
garding post-fire recovery. For example, fire ephemeral plants such 
as Pink Flannel Flowers (Actinotus forsythii) and the Sandy Hollow 
Commersonia (Andocalva rosea) are undetectable before fires (Bell 
& Copeland, 2004; Paroissien et al., 2020), but germinated, flowered 
prolifically, and became highly detectable across the firegrounds 12–
14 months after the 2019–2020 fires. Similarly, many monocots, such 
as the species-rich geophytic orchid group, have cryptic habits keep-
ing them relatively undetectable, but have fire-stimulated flowering 
5–18 months post-fire (Lamont & Downes, 2011) making them more 
attractive and identifiable to observers. Both animals and plants in 
recently burnt regions were also likely more exposed and therefore 
more detectable to citizen scientists, potentially leading to increased 
recording of these species due to increased detectability rather than 
increased presence. Similarly, it is not readily possible to distinguish 
between rare species, and those which are rarely detected, and how 
the inclusion or omission of these species in our dataset may have 
influenced our results. However, while we acknowledge the poten-
tial bias of changes in detectability, such biases are likely to also be 
present in most standardized monitoring (Isaac et al., 2011).

Our results using citizen science data complement findings 
using standardized data in available literature, which typically 
have a finer taxonomic and spatial scope. However, prior studies 
on fire responses of given taxon groupings often paint a complex 
picture of post-fire responses. For example, our results supported 
prior findings that reptile diversity can often remain unchanged or 
increase after fire, but contrary to our findings some diversity indi-
ces can also decrease (Hu et al., 2013, 2016; Moseley et al., 2003; 
Mott et al.,  2010). Burnt and unburnt diversity estimates for in-
sects both increased after the fires to a similar degree, despite un-
burnt estimates from before the fires being substantially greater 
than burnt region estimates. Determining the influence of the 
2019–2020 megafires on insects, as well as making comparison 
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10  |    GORTA et al.

to prior findings on post-fire responses (which vary among and 
within insect taxa, influenced by fire characteristics, and spa-
tial and temporal factors; Arnold et al.,  2017; Koltz et al.,  2018;  
Palusci et al., 2021) is therefore challenging. Fire-driven, spatial, 
and temporal influences likely exist across all taxon groupings and 
habitats we analyzed. Our analysis illustrates the potential of un-
standardized data collected through iNaturalist to expand on cur-
rent understanding of the effects of fire on diversity derived from 
standardized data.

5.3  |  Future directions

We have demonstrated the value of continually collected and tar-
geted citizen science data in providing valuable insights into effects 
of the 2019–2020 megafires on biodiversity at a large geographic 
scale. We answered questions using iNaturalist data across multiple 
taxon groupings, and a broad temporal and spatial scale for which 
there are no standardized monitoring data. However, the use of these 
data comes with caveats including the influence of the substantially 
reduced volume of data from before the 2019–2020 megafires, com-
pared to afterwards. With targeted post-fire sampling (Environment 
Recovery Project; Kirchhoff et al.,  2021), there were more records 
in our dataset after the 2019–2020 megafires, compared to the 
number of records before the fires. However, there were also more 
records in unburnt regions than burnt regions. While our findings 
indicated overall diversity was greater after the 2019–2020 fires, 
post-fire estimates were substantially greater in burnt than unburnt 
regions, which suggests uneven sampling effort among treatments 
was unlikely to have substantially driven these trends. Regardless, 
using iNEXT, we accounted for this in our analysis approach by con-
trolling for sampling completeness (see Section 2). Furthermore, be-
havioral, ecological, evolutionary explanations support our findings, 
as does the fact that, despite increased sampling, only some taxon 
groupings or habitats showed clear increases in diversity estimates 
post-fire and/or compared to unburnt treatments. Furthermore, this 
bias of increased sampling was likely to be systematic across taxon 
groupings and habitats (the project encouraged general sampling of 
fire-affected areas instead of targeting specific species or habitats), 
meaning that comparisons among taxon groupings and/or habitats 
are likely valid.

The potential bias of urbanization such that diversity estimates 
may be greater due to human influences on seed dispersal and dis-
turbance was also assessed using VIIRS night-time lights at a 15 arc-
second resolution (Elvidge et al.,  2017; Appendix  S4). There was a 
slight increase in median VIIRS values in unburnt areas compared to 
burnt areas, but no difference between before and after the fires (Ap-
pendix S4). Our findings indicated burnt areas which were less urban, 
showed greater diversity estimates post-fire than unburnt areas; thus, 
this bias was either negligible or outweighed by environmental (e.g., 
fire) drivers (Appendix  S4). We also examined whether shifts in di-
versity estimates more likely reflected species richness or species 
abundance distribution shifts by estimating beta diversity within the 

iNEXT framework (Chao et al.,  2023; see Appendix  S4). Estimates 
were derived from comparisons of pairs of assemblages (see Appen-
dix S4). There was little overall change within assemblage pair beta 
estimates as the value of q increased across [0,1,2], with two notable 
results (Appendix S4). Comparison of unburnt regions before and after 
the fire period showed a flattening of the curve as q increased, which 
suggests much of the change for this pair can be attributed to abun-
dant species. This was not apparent for the comparison of unburnt 
and burnt regions post-fire which showed beta estimates decreased 
with q, although we note that this is in the extrapolated part of the 
curve. An understanding of the underlying drivers of diversity shifts 
is important for informed management and is achievable through the 
use of citizen science data. Such data should continue to form an in-
tegral part of the ecological and management toolbox for monitoring, 
assessing, and responding to large-scale disturbance events, such as 
the 2019–2020 Australian megafires.

This toolbox could be further improved with the integration of 
citizen science data and structured monitoring data, to maximize the 
quantity, rigor, and breadth of information available to support the 
management of biodiversity. In our case, our analyses and results 
cover broad biodiversity trends, but the lack of declines detected at 
this scale cannot be extrapolated to the species or local scale. For 
example, management and policy implications from further inves-
tigations of insect responses to fire would benefit from a focus on 
lower taxonomic levels (Saunders et al., 2021). To this end, further 
fire-response research on readily identifiable insect species, from 
groups including dragonflies, damselflies, and butterflies which are 
well represented in iNaturalist observations (Mesaglio et al., 2023), 
would provide finer scale insights more applicable to environmental 
managers. By integrating the data available through standardized 
local, species-, or population-specific monitoring and broader scale 
citizen science data, we will have a greater information base from 
which to identify how and where to sample minimizing gaps and re-
dundancies post-disturbance.

6  |  CONCLUSIONS

In the context of widespread changes to fire-conducive conditions 
and associated fire regimes globally (Abatzoglou et al., 2019; Jolly 
et al., 2015; Keeley & Syphard, 2016; Parks et al., 2016), ecologists, 
managers, and governments need to determine the influence of such 
changes on biodiversity at a broad scale, to adapt, and appropriately 
manage ecosystems. We have demonstrated across a fire footprint 
of over five million hectares, that diversity across taxon groupings 
and habitats increased up to 18 months after the 2019–2020 Aus-
tralian megafires. Further examination of the influence of long-term 
fire regimes is critical to inform long-term trends in diversity.
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